

General Certificate of Education June 2010

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & \{\text { Area of sector }=\} \frac{1}{2} r^{2} \theta \\ & \quad=\frac{1}{2} \times 8^{2} \times 1.4=44.8\left\{\mathrm{~m}^{2}\right\} \end{aligned}$	M1 A1	2	$\frac{1}{2} r^{2} \theta$ seen or used for the area Must be exact, not rounded to
(b)(i)	$\begin{aligned} & \{\text { Arc }=\} r \theta \\ & \quad \ldots=11.2 \\ & \text { Perimeter of sector }=16+11.2=27.2\{\mathrm{~m}\} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1F } \end{gathered}$	3	$r \theta$ seen or used for the arc length PI Condone AWRT 11.2 Ft on c's evaluation of 8×1.4
(ii)	$\begin{gathered} 27.2=2 \pi x \\ x=\frac{27.2}{2 \pi}=4.329 \ldots=4.33 \text { to } 3 \mathrm{sf} \end{gathered}$	M1 A1	2	[c's numerical answer for (b)(i)] $=2 \pi x$ Condone >3sf
	Total		7	
2(a)	$\begin{aligned} & u_{2}=6.8 \\ & u_{3}=8.72 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1F } \end{gathered}$	2	OE eg 34/5 Ft on $6+0.4 \times$ c's u_{2}
(b)	$L=6+0.4 L$	M1		Replacing u_{n+1} and u_{n} by L
	$L=\frac{6}{1-0.4}$	m1		PI provided M scored
	$L=10$	A1	3	Must form an equation in L otherwise $0 / 3$
	Total		5	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$6=15$	M1		Sine rule OE PI
	$\begin{aligned} & \overline{\sin \theta}=\overline{\sin 150} \\ & \sin \theta=\frac{6 \times \sin 150}{15} \quad\{=0.2\} \end{aligned}$	m1		Rearrangement
	$\theta=11.53(6 . .)=11.5^{\circ}\left\{\text { to nearest } 0.1^{\circ}\right\}$	A1	3	AG Must see at least 4sf value or an exact value for $\sin \theta(0.2,3 / 15$, OE) before seeing the printed value 11.5
(b)	Angle $B=180-(150+\theta)=18.5$ \{to 3sf $\}$	B1		Award for $B=$ any value between 18 and 19 inclusive [18.463041....]
	$\text { Area }=\frac{1}{2} \times 6 \times 15 \sin B$	M1		
	$=14.3\left\{\mathrm{~cm}^{2}\right\}$ to 3sf	A1	3	Accept a value 14.2 to 14.3 inclusive Note: For methods involving $A C$, for the M1 need both a correct method to find $A C$ and a correct area formula
	Total		6	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$p=-3 ; q=3$	B1;B1	2	Accept even if just embedded in the expansion
(b)(i)	$\begin{aligned} & \int\left(1-\frac{1}{x^{2}}\right)^{3} \mathrm{~d} x= \\ & \int\left(1-3 x^{-2}+3 x^{-4}-x^{-6}\right) \mathrm{d} x \end{aligned}$	M1		Uses (a) with indication of integration and indication of $\frac{1}{x^{n}}=x^{-n}$ PI
	$=x+3 x^{-1}-x^{-3}+\frac{1}{5} x^{-5}\{+c\}$	m1 A2F,1F	4	At least three powers of x correctly obtained Ft on c's non-zero integers p and q. A1F if 3 of the 4 terms are correct (ft) or if all correct (ft) but left unsimplified Condone missing $+c$.
(ii)	$\begin{aligned} & \int_{\frac{1}{2}}^{1}\left(1-\frac{1}{x^{2}}\right)^{3} \mathrm{~d} x= \\ & \left(1+3-1+\frac{1}{5}\right)-\left(\frac{1}{2}+6-8+\frac{32}{5}\right) \end{aligned}$	M1		Attempting to calculate $\mathrm{F}(1)-\mathrm{F}(1 / 2)$ where F is c's answer to part (b)(i) provided F is not the integrand or the c's equivalent of the integrand $\left(1-\frac{1}{x^{2}}\right)^{3}$.
	$=-\frac{17}{10}$	A1	2	OE exact answer eg -1.7
	Total		8	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\left\{S_{\infty}=\right\} \frac{a}{1-r}=\frac{10}{1-r}$	M1		$\frac{a}{1-r} \text { used }$
	$\frac{10}{1-r}=50 \text { so } 1-r=\frac{10}{50} \Rightarrow r=\frac{4}{5}$	A1	2	AG Condone verification with the correct final statement but be convinced.
(ii)	$\begin{array}{r} 2^{\text {nd }} \text { term }=a r \\ =8 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	ar stated or used for the $2^{\text {nd }}$ term. PI by ans ' 8 ,
(b)(i)	$\begin{aligned} & 4^{\text {th }} \text { term }=a+3 d ; 8^{\text {th }} \text { term }=a+7 d \\ & a+3 d=10, \quad a+7 d=8 \\ & \Rightarrow 4 d=-2 \quad \Rightarrow d=-0.5 \end{aligned}$	M1 A1F A1	3	Uses $a+(n-1) d$ correctly at least once Both eqns. correct ft on c's (a)(ii) OE eg $8=10+4 d$ OE fraction.
(ii)	$a+3(-0.5)=10$	M1		An appreciation that a is required in (b)(ii) and a valid method to find a anywhere or PI if $a=11.5$ seen/used
		AIr		Ft on c's non-zero value for d ie using $a=10-3 d$ or $a=$ c's $8-7 d$. [c's 8 is candidate's answer to (a)(ii)]
	$\sum_{n=1}^{40} u_{n}=S_{40}=\frac{40}{2}[2 a+(40-1) d]$	M1		$\frac{40}{2}[2 a+(40-1) d]$ OE
	$=70$	A1	4	
	Total		11	

MPC2 (cont)

MPC2 (cont)

Q	Solution	Marks	Total	Comments
8(a)	($y=1$	B1	1	
(b)	$h=0.2$	B1		PI
	$\mathrm{f}(\mathrm{x})=2^{4 x}$			
	$\mathrm{I} \approx h / 2\{\ldots\}$			
	$\begin{aligned} & \{.\}=\mathrm{f}(0)+\mathrm{f}(1)+2[\mathrm{f}(0.2)+\mathrm{f}(0.4)+\mathrm{f}(0.6)+\mathrm{f} \\ & (0.8)] \end{aligned}$	M1		OE summing of areas of the 'trapezia'..
	$\begin{aligned} & \{.\}=1+16+2\left(2^{0.8}+2^{1.6}+2^{2.4}+2^{3.2}\right) \\ & =1+16+2(1.741 . .+3.031 . .+5.278 . .+9.1 \\ & 895 . .) \quad=[17+2 \times 19.24 . . .] \end{aligned}$	A1		OE Accept 2dp rounded or truncated evidence
	$\mathrm{I}=5.55$ (to2dp)	A1	4	Must be 5.55
(c)	Stretch(I) in y-direction(II) scale	M1		Need (I) and either (II) or (III)
	$\text { factor } \frac{1}{8} \text { (III) }$	A1	2	Need (I) and (II) and (III)
	ALTn: Translation with an indication that the translation is in the x-direction			Combination of different transformations scores 0/2
	(B1) $\left[\begin{array}{c} \frac{3}{4} \\ 0 \end{array}\right]$ (B1)			
(d)	$g(x)=2^{4(x-1)}-\frac{1}{2}$			B1 for either $2^{4(x+1)}-\frac{1}{2}$ or for
		B2,1,0		$2^{4(x-1)}+\frac{1}{2} \text { or for } 2^{4 x-1}-\frac{1}{2}$
(e)(i)	At $Q, y=0 \Rightarrow 2^{4(x-1)}=2^{-1}$	M1		Reaches a stage from which linear eqn can be stated directly eg an alternative stage is $4(x-1) \log 2=-\log 2$
	$\Rightarrow 4 x-4=-1 \Rightarrow x=0.75$	A1	4	NMS mark as 4 or 0
	$\log _{a} k=\log _{a} 2^{3}+\log _{a} 5-\log _{a} 4$	M1		One law of logs used
	$\log _{a} k=\log _{a}\left(2^{3} \times 5\right)-\log _{a} 4$			A second law of logs used; could be
		M1		$\log _{a} k=\log _{a} 2^{3}+\log _{a}\left(\frac{3}{4}\right)$
	$\log _{a} k=\log _{a}\left(\frac{2^{3} \times 5}{4}\right)=\log _{a} 10 \Rightarrow k=1$	A1	3	CSO AG
(ii)	$2^{4 x-3}=\frac{5}{4} \text { so }$			Equate y 's, take logs (to any base) of both sides and apply $3^{\text {rd }}$ law of logs.
	$(4 x-3) \log _{10} 2=\log _{10} \frac{5}{4}$	M1		$\text { Altn } 4 \times \log 2=\log \left(\frac{5}{4} \times 2^{3}\right)$
	$3 \log _{10} 2+\log _{10}\left(\frac{5}{4}\right)$			Rearrange correctly to $x=\ldots$. Altn $4 x \log 2=\log 10$
	$x=4 \log _{10} 2$			In both cases, log term(s) must have same base and expressions must be in
	$x=\frac{\log _{10} 10}{4 \log _{10} 2} \quad \text { so } \quad x=\frac{1}{4 \log _{10} 2}$	m1 A1	3	an exact form, ie not approx. dec. vals CSO AG Must be clear evidence that base 10 is used, also be convinced
	Total		17	
	TOTAL		75	

